Data Blending & Integration
More and more unstructured, organic data related to human behavior, beliefs, and opinions are being shared online. Because of their availability and richness, these data are an important source of information for social scientists attempting to characterize and predict human and societal dynamics. They give insights that traditional survey data can miss and can be less costly to collect. The researchers working on data blending and integration consider issues related to combining data across multiple data sources, some of which may be organic, administrative, qualitative, and/or survey data. We focus on methods for constructing and combining variables from numeric, categorical, open-ended text, and image data.
Faculty
Professor
Professor and Operations and Information Management Area Chair
Associate Professor
Director, Massive Data Institute
Sonneborn Chair | Chair and Professor, Department of Computer Science | Professor, McCourt School of Public Policy